
Marc Schoolderman
Tweede golf

… WHO WROTE YOUR
SOFTWARE?

Do you know…

May 6th, 2024

2

SOFTWARE MUST BECOME SAFER 

● Fewer vulnerabilities  

● A more reliable Internet 

● Resilient critical infrastructure

Sudo logo: Mark Stillman
CC-BY 4.0

3

4

5

6Word cloud: Nicole C. Baratta
CC-BY-NC-SA 2.0

Ferris mascot: Karen Rustad Tölva
CC0

Who wrote sudo-rs?

7

OUR TEAM

● Developers: 🧑💻 🧑💻 🧑💻 🧑💻

Who wrote sudo-rs?

8

OUR TEAM

● Developers: 🧑💻 🧑💻 🧑💻 🧑💻
● Outside contributors: 🙋 🙋 🙋 🙋 🕵 🙋 🙋 🙋 🙋 🙋 🧑✈ 🙋 🙋 👩🎤

Who wrote sudo-rs?

9

OUR TEAM

● Developers: 🧑💻 🧑💻 🧑💻 🧑💻
● Outside contributors: 🙋 🙋 🙋 🙋 🕵 🙋 🙋 🙋 🙋 🙋 🧑✈ 🙋 🙋 👩🎤

NOT OUR TEAM

● 11 Developers 🤷 🤷 🤷 🤷 🤷 🤷 🤷 🤷 🤷 🤷 🤷
● 1 Bot 🤖
● 4 GitHub teams …🤷🤷🤷🤷🤷🤷🧑🎤🤷🤷🤷👨🎤🤷 🤷🤷🤷🦹🤷🤷🤷🤷🤷🧑✈🤷🤷👩🎤🤷🕵🤷🤷🤷🤷🤷 🥷🤷??

Who wrote sudo-rs?

10

$ cargo supply-chain publishers

How many lines of code is sudo-rs?

11

OUR TEAM
● sudo-rs: 20.320 lines

NOT OUR TEAM
● log: 5594 lines
● glob: 2160 lines
● libc: 121.914 lines (bindings)

$ cargo vet

How much of sudo-rs is our work?

12

CONCLUSIONS: 

● At least 13.5% of the lines of active code  

● At most 33% of the people involved

● sudo-rs has minimal dependencies (best-case scenario)

Running example: pet project “cargo pulse”

13

ME:
● 1 contributor
● 181 lines of Rust
● 7 dependencies

NOT ME:
● 99 contributors, 28 teams
● 4.2 million lines of code, 

1.2 million not audited 

● 194 indirect dependencies

 Burden Problem Trust Problem

14Images: Lars Meiertoberens & kholifah, the Noun Project, CC-BY 3.0

 Burden Problem Trust Problem

15

Burden: Version management

16

● Easy-to-Package?

$ cargo debstatus

Burden: Version management

17

● Duplicate, Incompatible Versions  

● Cargo.toml up to date?
- (Compatibility with other versions) 

● Cargo.lock usually not included
- (Versions known to work)

$ cargo tree -d

Burden: License management

18

$ cargo license

● Publish as Apache-2.0-OR-MIT? 

● Distribute binaries? 

● Respect copyleft licenses!

 Burden Problem Trust Problem

19

Trust: Code Quality

20

$ cargo geiger

● Undefined Behaviour (UB) impossible in normal Rust 

● unsafe Rust: “trust me, I’m a real programmer” 

● Pet project: 181 lines of safe Rust 
 
… but 20’000+ unsafe expressions under the hood

Trust: Vulnerabilities

21

$ cargo audit, cargo deny

● We know how to solve this!
● But do all developers:

- report vulnerabilities?
- admit embarrassing mistakes?
- actively update versions?

Trust: Build time security

22

● Dependencies come with build scripts, not sandboxed!
➡ build.rs

● Known problem in PyPI (Python) and npm (Node.js) repositories

https://jfrog.com/webinar/identifying-and-avoiding-malicious-packages-2/

https://jfrog.com/webinar/identifying-and-avoiding-malicious-packages-2/

Trust: Who is our Source of Truth?

23

● Do we know “Josh Triplett”, “John Titor”, “gnzlbg”, … ?

➡ How do we know we are getting our code from them?  

➡ Can we trust them to protect their credentials?

➡ Do they respond to incidents?  

➡ Can they be coerced to do something?

XZ Utils logo by “Jia Tan”

Trust: No proper authentication for dependencies

24

● SSL certificates only authenticates the package repository 

● Signed commits are weakly authenticated (“this is my SSH key”) 

● OpenPGP unpopular, “Web of Trust” is broken  

● Linux Foundation project: https://trustoverip.org/ 

https://trustoverip.org/

What to do?

25

What not to do?

This is not a problem we can “fix”

26

● Modern software is complex  

● Many-and-small dependencies
➡ Large “Software Bill of Materials”
➡ Allows analysis and risk management 

● Few-but-large dependencies, big standard library
➡ Software bloat
➡ Hard to change bad design choices 

Bad solution: avoiding Rust or Open source

27

● “Trust problem” is universal, Rust helps keep it under control  

● Proprietary software obscures problems

Cube by Zaenon, CC0

Bad solution: duplicating code

28

● Locks you out of bug fixes 

● No vulnerability reporting  

● Loses licensing information  

Original copy Icon by Font Awesome, MIT licensed

?
?

29

Low hanging fruit

‣ https://tweedegolf.nl/en/blog/104/dealing-with-dependencies-in-rust
‣ https://www.memorysafety.org/blog/reducing-dependencies-in-sudo/

● Critically evaluate need for dependencies, check crates.io statistics 

● Give your users a choice (feature flags) 

● Participate in RUSTSEC  

● Work towards a standard set of “common dependencies” 

● Learn from Linux distributions: reproducible builds, hygiene checks, …

https://tweedegolf.nl/en/blog/104/dealing-with-dependencies-in-rust
https://www.memorysafety.org/blog/reducing-dependencies-in-sudo/

30Openclipart by Jan Helebrant, CC0

Security is a trade-off

31Openclipart by Gordon Dylan Johnson, CC0

Security is a trade-off

ThanK
YOU

More information available at:

 https://tweedegolf.nl/en/blog

