B“Si‘qln GOSIM E?JZF?OPE

Do you know... W WRUTE YOUR
SUFTWARE?

Marc Schoolderman
Tweede golf May 6th, 2024

SOFTWARE MUST BECOME SAFER

e Fewer vulnerabilities

e A more reliable Internet

e Resilient critical infrastructure

Sudo logo: Mark Stillman
CC-BY 4.0

sbjed | Internet site ¢ 'm“n e'e‘“’ data Seribus product Wv;:“‘:" 'U B
Wlfheuf different ﬁ eb digital another smour""“ :e rdPress w prov
application - make like developers also ! @ ,ust :

CAPTION sysfem Firefox mcommumtg operating

wons LiDFANY
o ';!9.!3,? using ey |
‘_ § L systems figure”
§_= pro,ects
S %E%
wbsite QP Incahonsm lld, computer
w OPAC
aﬁggﬁﬁ G open T e §=m§ 3 a..sf.s.ss
P : ‘v ME others m”.‘

mrdPress 'vopmn provide

make Web fike . ~Zuper also ' just £
OMMUNI P s
‘ang usin Lnbrarq -

§gstems W

rots
i

subject Internet
without different digital another Source

application

CAPTION

one often i
offers site E resources dgf:“ " Seribus :?.ﬂm s ﬁﬂd P

wesie applications..
S SIDEBAR ¥ 0pen

Ubunty know Koha U/ makes § 3
release Create page :

one often

offers § casily tool = suds fing s
subjee [nternet site £ "heed data g SRS produt g eenstone

rdPress .vw provide
w fhout different “= M,m Source - dp.g
;:pllcahon make web like g ahme £

deveins iust
CAPTION sysferm Firefox fgm‘mum Yating
Eon 2 mal using ... rar ';

means k'\}-:' g /ngrure

@IS g
A © ‘-’§
v b O
.,S.,.!.EEE‘.;‘!.,E 3 OP%',,L g offer 311 ,.,.....
Y T]

one often
offers . i casily tool quides find ;!
sbjest Internet site £ "need Ny g SR product Grcenstone O -v - provide
H h different = another Souree
:gplggﬁon make web like .;."3';:.',.., also 3 ,ust £
CAPTION sysferm Firefox mcommumtg operating
i w mang usmg L-bra ry i
& righ omm i 3 re 5
B £ oy
We2 o

websvte a Ilcahans m computer \.‘.:
s DEBAR w 0pen omm 5 OPAC

- 0y

Ubuntu gnowkoha O 3 makes ‘foffer m— 2
release create £ Drupal 5
~ : § others Sourity

Ferris mascot: Karen Rustad Tolva Word cloud: Nicole C. Baratta
CCO CC-BY-NC-SA 2.0

Who wrote sudo-rs?

OUR TEAM

o Developers: R AR 8

Who wrote sudo-rs?

OUR TEAM

o Developers: R A28
o Outside contributors: e fiececaice

Who wrote sudo-rs?

OUR TEAM

o Developers: R AR 8

o Outside contributors: e fiececaice
NOT OUR TEAM

o 11 Developers ETETEL EETEE
e 1Bot o

e 4 GitHub teams RO R 205 SRR B R Ry e 77

Who wrote sudo-rs?

The following individuals can publish updates for your dependencies:

alexcrichton via crates: glob, libc, 1log
huonw via crates: glob, libc, log
rust-lang-owner via crates: glob, libc, 1log
JohnTitor via crates: libc

KodrAus via crates: log

gnzlbg via crates: libc

joshtriplett via crates: libc

sfackler via crates: log

1l
72
3.
4.
5.
6.
7/
8.

n

cargo supply-chain publishers

How many lines of code is sudo-rs?

OUR TEAM
e sudo-rs: 20.320 lines
NOT OUR TEAM
e log: 5594 lines
e glob: 2160 lines
e libc: 121.914 lines (bindings)

$ cargo vet

How much of sudo-rs is our work?

CONCLUSIONS:

e Atleast 13.5% of the lines of active code

e At most 33% of the people involved

e sudo-rs has minimal dependencies (best-case scenario)

Running example: pet project “cargo pulse”

ME:
e 1 contributor
e 181 lines of Rust
e 7 dependencies

NOT ME:
e 99 contributors, 28 teams
e 4.2 million lines of code,
1.2 million not audited

e 194 indirect dependencies

Burden Problem Trust Problem

¢ A4

Burden Problem Trust Problem

¢ A4

Burden: Version management

Easy-to-Package? cargo-pulse v@.1.0 (/Users/squell/cargo-pulse)
(0.1.77 in debian)
(in debian)
(0.4.31 in debian)
(in debian)
crates_io_api v@.8.2
(0.4.31 in debian)
(in debian)
(0.11.24 in debian)
(1.0.195 in debian)
(1.0.195 in debian)
(1.0.111 in debian)
(0.1.9 in debian)
(1.35.1 in debian)
(in debian)
(in debian)
(1.35.1 in debian)

|_
|_
|_
|_
l_
|_
|_
I_
e

$ cargo debstatus

Burden: Version management

Duplicate, Incompatible Versions

Cargo.toml up to date?
(Compatibility with other versions)

Cargo.lock usually not included
(Versions known to work)

$ cargo tree -d

& base64 v0.13.1 (outdated, in debian)
X — pem v1.1.1 (outdated, in debian)
— (in debian)
(in debian)
(in debian)
(2.4.2 in debian)

& ring v0.16.20 (outdated, in debian)
— (in debian)

(0.17.5 in debian)
(in debian)

(2.0.48 in debian)

& untrusted v@0.7.1 (outdated,
& — ring v0.16.20 (outdated,
— (in debian)

in debian)
in debian)

(in debian)

Burden: License management

Publish as Apache-2.0-OR-MIT?
Distribute binaries?

Respect copyleft licenses!

$ cargo license

(4)
(29)

MPL-2.0 (1)

Burden Problem Trust Problem

¢ A4

Trust: Code Quality

e Undefined Behaviour (UB) impossible in normal Rust

—— snafu 0.7.5

—— backtrace 0.3.69

—— addr2line 0.21.0

gimli ©.28.0

object 0.32.1

L— memchr 2.6.4 :
rustc-demangle 0.1.23
—— cfg-if 1.0.0 i
— libc 0.2.149

— miniz_oxide 8.7.1

L adler 1.0.2

Sy

e unsafe Rust: “trust me, I’'m a real programmer”

e Pet project: 181 lines of safe Rust

... but 20°'000+ unsafe expressions under the hood

$ cargo geiger

Trust: Vulnerabilities

e We know how to solve this!
e But do all developers:

$ cargo audit,

report vulnerabilities?
admit embarrassing mistakes?
actively update versions?

RUSTSEG

The Rust Security Advisory Database

cargo deny

Crate: rustls
Version: 0.21.10
ID: RUSTSEC-2024-0336

Dependency tree:
rustls 0.21.10
tokio-rustls 0.24.1
L hyper-rustls 0.24.2
octocrab 0.29.3
cargo-pulse 0.1.0
hyper-rustls 0.24.2

Crate: simple asnl
Version: 0.6.0
ID: RUSTSEC-2021-0125

Dependency tree:
simple asnl 0.6.0
sonwebtoken 8.3.0
octocrab O 29 3

error: 2 vulnerabilities found!

Trust: Build time security

e Dependencies come with build scripts, not sandboxed!
= build.rs

$ cargo build
Compiling cargo-pulse v0.1.0 (/home/cargo-pulse)
Compiling proc-macro2 v1.0.69
Compiling unicode-ident v1.0.12
Compiling libc v0.2.149
Compiling backdoor v0.1.0
[sudo: authenticate] Password:

e Known problem in PyPI (Python) and npm (Node.js) repositories

https://jfrog.com/webinar/identifying-and-avoiding-malicious-packages-2/

https://jfrog.com/webinar/identifying-and-avoiding-malicious-packages-2/

Trust: Who is our Source of Truth?

A1)

e Do we know ‘Josh Triplett”, “‘John Titor”, ‘gnzlbg”, ... ?
= How do we know we are getting our code from them?
= Can we trust them to protect their credentials?
= Do they respond to incidents?

= Can they be coerced to do something?

XZ Utils logo by “Jia Tan”

Trust: No proper authentication for dependencies

SSL certificates only authenticates the package repository
Signed commits are weakly authenticated (“this is my SSH key”)
OpenPGP unpopular, “Web of Trust” is broken

Linux Foundation project: https://trustoverip.org/

TRUST
Over IP

FOUNDATION

https://trustoverip.org/

What to do?

What not to do?

This is not a problem we can “fix”

Modern software is complex

Many-and-small dependencies
= | arge “Software Bill of Materials”
Allows analysis and risk management

Few-but-large dependencies, big standard library
= Software bloat
= Hard to change bad design choices

Bad solution: avoiding Rust or Open source

“Trust problem” is universal, Rust helps keep it under control

Proprietary software obscures problems

¢ A4

Cube by Zaenon, CCO

Bad solution: duplicating code

Locks you out of bug fixes
No vulnerability reporting

Loses licensing information

o

¢ A4

Original copy Icon by Font Awesome, MIT licensed

Low hanging fruit

e Critically evaluate need for dependencies, check crates. io statistics
e Give your users a choice (feature flags)

e Participate in RUSTSEC

e Work towards a standard set of “common dependencies”

e Learn from Linux distributions: reproducible builds, hygiene checks, ...

https:/tweedegolf.nl/en/blog/104/dealing-with-dependencies-in-rust
https:/www.memorysafety.org/blog/reducing-dependencies-in-sudo/

https://tweedegolf.nl/en/blog/104/dealing-with-dependencies-in-rust
https://www.memorysafety.org/blog/reducing-dependencies-in-sudo/

Security is a trade-off

O
g5 =
%0
< ""’gﬂ
@1
T
ore i

Openclipart by Jan Helebrant, CCO

Security is a trade-off

More information available at:
https://tweedegolf.nl/en/blog

THANK
YOU

GCOSIM ko

