
Write Once Run Anywhere,
But for GPUs
Hung-Ying, Tai (hydai)
WasmEdge Maintainer, CNCF AMBASSADORS

Agenda

● Quick Demo - LlamaEdge Chat
● Introduction to WebAssembly, WASI-NN, and WasmEdge
● Demo - LlamaEdge Server
● Introduction to LlamaEdge
● Demo - An RAG Application, Gaianet
● The RAG Software Stack
● Demo - Run Lightweight LLM Containers
● Container Integration

● https://github.com/hydai/GOSIM2024

https://github.com/hydai/GOSIM2024

A Quick Demo - LlamaEdge Chat
https://github.com/LlamaEdge/LlamaEdge/tree/main/chat

https://github.com/LlamaEdge/LlamaEdge/tree/main/chat

WebAssembly

● Size is smaller: 1/100 the size of typical LXC images
● Faster startup time
● Near native runtime performance
● Secure by default in a sandbox and very small attack surface
● Completely portable across platforms

○ Distro: Windows, Linux, MacOS
○ Arch: amd64, arm64

● Programming language agnostic
○ Rust, C, C++, Golang, JavaScript, Kotlin, and more!

● Plays well with k8s, service mesh, distributed runtimes etc.

WebAssembly Con’t - Trade Off

● Don’t support GPU, or any specific hardware such as TPU.
● Must learn new language SDKs to create optimized services
● Common libraries need to be ported

There is no way to run AI/LLM workload with pure Wasm!!!

WASI-NN is fixing it

● Define APIs for Wasm to interact with AI/LLM models
○ load, load_by_name, load_by_name_with_config

■ Load models with the given options/configurations
○ init_execution_context

■ Initialize the execution context with the loaded model
○ set_input, get_output, get_output_single

■ Handle the IO
○ compute, compute_single

■ Do the inference job
○ unload

■ Eject models to release the RAM/VRAM usage

● https://github.com/second-state/wasmedge-wasi-nn/

https://github.com/second-state/wasmedge-wasi-nn/

WasmEdge

● A lightweight, secure, high-performance and extensible WebAssembly
Runtime

● Plus lots of extensions to empower the Wasm execution environment
○ Support AI inference in llama.cpp, Intel Neural Speed, Tensorflow, OpenVINO,

PyTorch etc.
○ Support networking socket and web services
○ Support databases, caches, and DOs
○ Seamlessly integrates into the existing cloud-native infra
○ Support writing wasm programs using JS

● https://github.com/WasmEdge/WasmEdge

https://github.com/WasmEdge/WasmEdge

Demo - LlamaEdge API Server
https://github.com/LlamaEdge/LlamaEdge/tree/main/api-

server

https://github.com/LlamaEdge/LlamaEdge/tree/main/api-server
https://github.com/LlamaEdge/LlamaEdge/tree/main/api-server

Why LlamaEdge API Server?

● Very lightweight and fast
○ Entire runtime + app is less than 30MB
○ Runs well on Raspberry Pi and Jetson devices
○ Full native GPU and hardware accelerator support

● Single command to install and run as an unprivileged user
● Can be managed and orchestrated directly by container tools and k8s
● Supports a wide range of LLMs, VLMs, MoE models on Hugging face
● Supports a wide range devices and drivers. Runs at native GPU speed

○ Nvidia CUDA, TensorRT
○ Apple M chips with metal or MLX
○ Advanced CPUs

● Customizable formatted responses (JSON and function calling)
● An efficient and extensible developer platform

○ RAG, conversation state and function calling can all be built into the API server
like OpenAI Assistant API

○ No need for a separate middleware app (e.g., LangChain)

LlamaEdge as a dev platform

● Build a single portable and deployable app
○ Move code closer to model and data
○ Improve efficiency
○ Simplify development and workflow
○ Improve security

● No need for external middleware and containers to orchestrate common
LLM app components

● No Python dependency (e.g., LangChain)
● Use Rust or JS to extend LlamaEdge components!
● Dev experience that matches the best of OpenAI

○ i.e., highly integrated OpenAI Assistant API

Demo - An RAG Application, Gaianet
https://github.com/GaiaNet-AI/gaianet-node/

https://llamaedge.com/docs/user-guide/server-side-rag/

https://github.com/GaiaNet-AI/gaianet-node/
https://llamaedge.com/docs/user-guide/server-side-rag/

LlamaEdge Software Stack

Demo - Run Lightweight LLM Containers
https://wasmedge.org/docs/zh-tw/start/build-

and-run/docker_wasm_gpu/

https://wasmedge.org/docs/zh-tw/start/build-and-run/docker_wasm_gpu/
https://wasmedge.org/docs/zh-tw/start/build-and-run/docker_wasm_gpu/

Container integration

● Run the LlamaEdge (and GaiaNet) stack inside a Docker container
○ Requires Docker Nvidia shim
○ Requires CUDA driver in the container

● Use Docker + Wasm + CDI (container-device-interface) for GPU
○ Requires Docker to provide GPU access via CDI
○ Similar to work already done on crun

● Use the LlamaEdge WebGPU backend (WIP)
○ Requires Docker to provide WebGPU API access to containers

ThanK
YOU

 @hydai_tw
 @hydai

