

whoami(1)

~cassaundra

• Build system hacker

• Programming language enthusiast

• Former contributor to the Rust project

• Founder of Uredium Consulting

• Maintainer and developer of quake

Website https://cassaundra.dev

Email contact@cassaundra.dev

Fediverse @cassaundra@meow.lgbt

GitHub @cassaundra

sr.ht ~cassaundra

Key problem

Building UI applications is hard

UI app woes

• Cross-platform is already hard

∘ Bundling makes it even harder (RPMs, APKs, Flatpak, macOS universal binaries, etc.)

• Language build systems don’t care about anything but code in that language

UI app woes

• Cross-platform is already hard

∘ Bundling makes it even harder (RPMs, APKs, Flatpak, macOS universal binaries, etc.)

• Language build systems don’t care about anything but code in that language

UI app woes

• Cross-platform is already hard

∘ Bundling makes it even harder (RPMs, APKs, Flatpak, macOS universal binaries, etc.)

• Language build systems don’t care about anything but code in that language

Defining terms

What is a build system?

Defining terms

• Compiler: transforms sources into artifacts

∘ Examples: gcc, rustc, tar, pandoc (also: decompilers, transpilers)

• Build system: orchestrates units of compilation

∘ Examples: make, ninja, Gradle, CMake, Buck2/Bazel/Pants

Defining terms

• Compiler: transforms sources into artifacts

∘ Examples: gcc, rustc, tar, pandoc (also: decompilers, transpilers)

• Build system: orchestrates units of compilation

∘ Examples: make, ninja, Gradle, CMake, Buck2/Bazel/Pants

Defining terms

• Compiler: transforms sources into artifacts

∘ Examples: gcc, rustc, tar, pandoc (also: decompilers, transpilers)

• Build system: orchestrates units of compilation

∘ Examples: make, ninja, Gradle, CMake, Buck2/Bazel/Pants

Defining terms

• Compiler: transforms sources into artifacts

∘ Examples: gcc, rustc, tar, pandoc (also: decompilers, transpilers)

• Build system: orchestrates units of compilation

∘ Examples: make, ninja, Gradle, CMake, Buck2/Bazel/Pants

Build system taxonomy

Types of build systems:

• Task-based: Executes tasks based on various conditions

∘ Examples: just, npm run, most CI/CD systems

• Rules-based: performs actions informed by source/artifact mappings

∘ Examples: make, ninja, Meson (?), Buck2/Bazel/Pants

• Domain-specific: Designed for a given language/technology, benefits from

domain-specific knowledge. Batteries included.

∘ Examples: cargo, CMake, Maven, Meson

• Custom: Purpose-built systems for individual projects

∘ build.sh, cargo-xtask, etc.

Build system taxonomy

Types of build systems:

• Task-based: Executes tasks based on various conditions

∘ Examples: just, npm run, most CI/CD systems

• Rules-based: performs actions informed by source/artifact mappings

∘ Examples: make, ninja, Meson (?), Buck2/Bazel/Pants

• Domain-specific: Designed for a given language/technology, benefits from

domain-specific knowledge. Batteries included.

∘ Examples: cargo, CMake, Maven, Meson

• Custom: Purpose-built systems for individual projects

∘ build.sh, cargo-xtask, etc.

Build system taxonomy

Types of build systems:

• Task-based: Executes tasks based on various conditions

∘ Examples: just, npm run, most CI/CD systems

• Rules-based: performs actions informed by source/artifact mappings

∘ Examples: make, ninja, Meson (?), Buck2/Bazel/Pants

• Domain-specific: Designed for a given language/technology, benefits from

domain-specific knowledge. Batteries included.

∘ Examples: cargo, CMake, Maven, Meson

• Custom: Purpose-built systems for individual projects

∘ build.sh, cargo-xtask, etc.

Build system taxonomy

Types of build systems:

• Task-based: Executes tasks based on various conditions

∘ Examples: just, npm run, most CI/CD systems

• Rules-based: performs actions informed by source/artifact mappings

∘ Examples: make, ninja, Meson (?), Buck2/Bazel/Pants

• Domain-specific: Designed for a given language/technology, benefits from

domain-specific knowledge. Batteries included.

∘ Examples: cargo, CMake, Maven, Meson

• Custom: Purpose-built systems for individual projects

∘ build.sh, cargo-xtask, etc.

Build system taxonomy

Types of build systems:

• Task-based: Executes tasks based on various conditions

∘ Examples: just, npm run, most CI/CD systems

• Rules-based: performs actions informed by source/artifact mappings

∘ Examples: make, ninja, Meson (?), Buck2/Bazel/Pants

• Domain-specific: Designed for a given language/technology, benefits from

domain-specific knowledge. Batteries included.

∘ Examples: cargo, CMake, Maven, Meson

• Custom: Purpose-built systems for individual projects

∘ build.sh, cargo-xtask, etc.

Build system taxonomy

Types of build systems:

• Task-based: Executes tasks based on various conditions

∘ Examples: just, npm run, most CI/CD systems

• Rules-based: performs actions informed by source/artifact mappings

∘ Examples: make, ninja, Meson (?), Buck2/Bazel/Pants

• Domain-specific: Designed for a given language/technology, benefits from

domain-specific knowledge. Batteries included.

∘ Examples: cargo, CMake, Maven, Meson

• Custom: Purpose-built systems for individual projects

∘ build.sh, cargo-xtask, etc.

Example build systems

Example build systems

make(1)

make(1)

• Initially developed in 1976, still widely used today

• [In]famously terse syntax, but powerful set of features

• Based on rules, which consist of targets, prerequisites, and a recipe

• Often generated by other tools

Example Makefile

CC=gcc

CFLAGS=-g

objects=foo.o bar.o

.PHONY: all

all: $(objects)

%.o: %.c

$(CC) -c $(CFLAGS) -o $@

.PHONY: clean

clean:

-rm -f *.o

Rule syntax

<targets>: <preqrequisites>

<recipe>

...

Explanation

The target all has dependencies foo.o and

bar.o.

These targets match the implicit %.o: %.c

rule, which compiles C files into object files.

make takeaways

Advantages

• Rules system allows implicit optimization

• Recipes are shell scripts, a familiar construct

• On nearly every developer’s machine

• Additional features allow for more powerful expression

Disadvantages

• Difficult to read and write

• Brittle and hard to debug

• Shell script recipes ⇒ shell script problems

make takeaways

Advantages

• Rules system allows implicit optimization

• Recipes are shell scripts, a familiar construct

• On nearly every developer’s machine

• Additional features allow for more powerful expression

Disadvantages

• Difficult to read and write

• Brittle and hard to debug

• Shell script recipes ⇒ shell script problems

Bazel and Buck2

Bazel and Buck2 are in-house build systems that “own the world,” i.e. are aware of all

files, dependencies, projects, etc.

Advantages

• Allows for highly optimized builds and customization

• Works well at scale

Disadvantages

• Requires a lot of boilerplate

• Poor interop with outside tooling (e.g. package managers)

Bazel and Buck2

Bazel and Buck2 are in-house build systems that “own the world,” i.e. are aware of all

files, dependencies, projects, etc.

Advantages

• Allows for highly optimized builds and customization

• Works well at scale

Disadvantages

• Requires a lot of boilerplate

• Poor interop with outside tooling (e.g. package managers)

Finding a better solution

Finding a better solution

Target usecases

Target usecases:

• Simple task runner

• Cross-platform application bundle generator

• Multi-stage build procedure where the native build system doesn’t suffice

Build system requirements

What do we want out of a build system?

• Expressive and flexible: build scripts should be easy to read,write, and debug

∘ Simple and complex build-time requirements should be both be easily expressed

∘ Self-documenting, easily extensible, good error reporting

• Transformation-aware: understand source → artifact mappings

∘ Inferred implicitly and/or from user input

• Language-agnostic: support multilingual projects as a first-class feature

• Cross-platform: both for the host, and for target platforms

• Hackable:

∘ Allow the system’s simple rules to be faithfully abused

∘ Produce machine-readable metadata for third-party tooling

Build system requirements

What do we want out of a build system?

• Expressive and flexible: build scripts should be easy to read,write, and debug

∘ Simple and complex build-time requirements should be both be easily expressed

∘ Self-documenting, easily extensible, good error reporting

• Transformation-aware: understand source → artifact mappings

∘ Inferred implicitly and/or from user input

• Language-agnostic: support multilingual projects as a first-class feature

• Cross-platform: both for the host, and for target platforms

• Hackable:

∘ Allow the system’s simple rules to be faithfully abused

∘ Produce machine-readable metadata for third-party tooling

Build system requirements

What do we want out of a build system?

• Expressive and flexible: build scripts should be easy to read,write, and debug

∘ Simple and complex build-time requirements should be both be easily expressed

∘ Self-documenting, easily extensible, good error reporting

• Transformation-aware: understand source → artifact mappings

∘ Inferred implicitly and/or from user input

• Language-agnostic: support multilingual projects as a first-class feature

• Cross-platform: both for the host, and for target platforms

• Hackable:

∘ Allow the system’s simple rules to be faithfully abused

∘ Produce machine-readable metadata for third-party tooling

Build system requirements

What do we want out of a build system?

• Expressive and flexible: build scripts should be easy to read,write, and debug

∘ Simple and complex build-time requirements should be both be easily expressed

∘ Self-documenting, easily extensible, good error reporting

• Transformation-aware: understand source → artifact mappings

∘ Inferred implicitly and/or from user input

• Language-agnostic: support multilingual projects as a first-class feature

• Cross-platform: both for the host, and for target platforms

• Hackable:

∘ Allow the system’s simple rules to be faithfully abused

∘ Produce machine-readable metadata for third-party tooling

Build system requirements

What do we want out of a build system?

• Expressive and flexible: build scripts should be easy to read,write, and debug

∘ Simple and complex build-time requirements should be both be easily expressed

∘ Self-documenting, easily extensible, good error reporting

• Transformation-aware: understand source → artifact mappings

∘ Inferred implicitly and/or from user input

• Language-agnostic: support multilingual projects as a first-class feature

• Cross-platform: both for the host, and for target platforms

• Hackable:

∘ Allow the system’s simple rules to be faithfully abused

∘ Produce machine-readable metadata for third-party tooling

Build system requirements

What do we want out of a build system?

• Expressive and flexible: build scripts should be easy to read,write, and debug

∘ Simple and complex build-time requirements should be both be easily expressed

∘ Self-documenting, easily extensible, good error reporting

• Transformation-aware: understand source → artifact mappings

∘ Inferred implicitly and/or from user input

• Language-agnostic: support multilingual projects as a first-class feature

• Cross-platform: both for the host, and for target platforms

• Hackable:

∘ Allow the system’s simple rules to be faithfully abused

∘ Produce machine-readable metadata for third-party tooling

Applying requirements

Specific improvements:

• Provide complete control over granularity

• Use modern languages better suited for the job

• Improve expressibility by reducing magic and boilerplate

Overall goal:

Ensure trivial cases are easy, and non-trivial cases scale at most linearly with their

complexity

quake

quake

What is quake?

quake is a cross-platform build systemwith build scripts written in a Nushell DSL.

Features:

• Declarative, self-documenting build script DSL

• Hybrid rule- and task-based build system

• Quality error reporting (thanks to miette)

• Powerful scripting and data manipulation (thanks to Nushell)

Warning

Alpha code, not everything here works yet!

What is quake?

quake is a cross-platform build systemwith build scripts written in a Nushell DSL.

Features:

• Declarative, self-documenting build script DSL

• Hybrid rule- and task-based build system

• Quality error reporting (thanks to miette)

• Powerful scripting and data manipulation (thanks to Nushell)

Warning

Alpha code, not everything here works yet!

Nushell

• Cross-platform, functionally influenced

• Powerful data manipulation

∘ Read, manipulate, and convert between JSON, TOML, etc. seamlessly

∘ Transform it through pipelines, FP/SQL style

Nushell

• Cross-platform, functionally influenced

• Powerful data manipulation

∘ Read, manipulate, and convert between JSON, TOML, etc. seamlessly

∘ Transform it through pipelines, FP/SQL style

Nushell

• Cross-platform, functionally influenced

• Powerful data manipulation

∘ Read, manipulate, and convert between JSON, TOML, etc. seamlessly

∘ Transform it through pipelines, FP/SQL style

Nushell

• Cross-platform, functionally influenced

• Powerful data manipulation

∘ Read, manipulate, and convert between JSON, TOML, etc. seamlessly

∘ Transform it through pipelines, FP/SQL style

Nushell example #1

Source: https://nushell.sh

https://nushell.sh

Nushell example #2

Source: https://nushell.sh

https://nushell.sh

def-task

Inside build.quake:

def-task say-hello [] run {

echo "greetings!"

}

• Defines task named say-hello

• run { ... }: the run block

∘ What the task performs when it is run

def-task (cont.)

def-task say-hello [] run {

echo "greetings!"

}

def-task say-goodbye [] where {

declaration block

depends-on say-hello

} run {

run block

echo "goodbye!"

}

• Defines task say-goodbye, which depends on say-hello

• where { ... } (declaration block)

∘ Contains declarative commands like dependency

Purely declarative tasks

We can also define tasks that are purely declarative:

def-task check-rustfmt [] do {

cargo fmt --all-check

}

def-task check-clippy [] do {

cargo clippy --workspace --all-features --all-targets -- -D warnings

}

purely declarative--no `do` block!

def-task check [] where {

depends-on check-rustfmt

depends-on check-clippy

}

Task arguments

Tasks can take arguments!

def-task build [--release, package?: string, target?: string] {

mut args = ["build"]

if $release { $args ++= "--release" }

if (not is-empty $package) { $args += ["--package", $package] }

if (not is-empty $target) { $args += ["--target", $target] }

provide $args # sets `$in` in the `run` block

} run {

cargo ...$in

}

Conditionality

Everything is evaluated programmatically in Nushell

def-task build [] where {

if $nu.os-info.name == "macos" {

note requires command

requires "xcode toolchain is installed" check-xcode-toolchain

}

...

} run {

...

}

Sources and artifacts

• Tasks have sources and artifacts

∘ Represent a transformation

∘ Declared with sources and artifacts respectively in the declaration block

let crate_name = open Cargo.toml | get package.name

def-task build [] where {

sources ["Cargo.{lock,toml}", "src/**/.rs"]

artifacts [$"target/release/($crate_name)"]

} run {

cargo build --release

}

Sources and artifacts

• Tasks have sources and artifacts

∘ Represent a transformation

∘ Declared with sources and artifacts respectively in the declaration block

let crate_name = open Cargo.toml | get package.name

def-task build [] where {

sources ["Cargo.{lock,toml}", "src/**/.rs"]

artifacts [$"target/release/($crate_name)"]

} run {

cargo build --release

}

More granular mappings

• More granularity is needed: introducing transforms

∘ Adds a subtask with its own sources and artifacts

let gcc_args = ["-g", "-O2"]

def-task build [] where {

transforms ["foo.{c,h}"] into ["foo.o"] {

subtask run body

gcc ...$gcc_args -c foo.c

}

transforms ["main.c", "foo.h"] into ["myprogram"] {

gcc ...$gcc_args main.c foo.o

}

}

More granular mappings

• More granularity is needed: introducing transforms

∘ Adds a subtask with its own sources and artifacts

let gcc_args = ["-g", "-O2"]

def-task build [] where {

transforms ["foo.{c,h}"] into ["foo.o"] {

subtask run body

gcc ...$gcc_args -c foo.c

}

transforms ["main.c", "foo.h"] into ["myprogram"] {

gcc ...$gcc_args main.c foo.o

}

}

Clean it up

• Granularity tends to add verbosity, so we should automate where we can.

• Declarative commands can be called in normal functions

∘ ⇒ Write utility functions and toolchains!

Determining dependencies

Gathering metadata

$ clang -MM foo.c

foo.o: foo.c foo.h

$ clang -MT myprogram -MM main.c

myprogram: main.c foo.h

• -M commands are used for make-like

rules already

• Works with many other languages

(including Rust)

Parsing with Nushell

~> clang -MM $target |

parse "{target}: {deps}" |

update deps { split row " " } |

into record

+--------+---------------+

| target | foo.o |

+--------+---------------+

| | +---+-------+ |

| deps | | 0 | foo.c | |

| | +---+-------+ |

| | | 1 | foo.h | |

| | | | | |

| | +---+-------+ |

+--------+---------------+

Determining dependencies

Gathering metadata

$ clang -MM foo.c

foo.o: foo.c foo.h

$ clang -MT myprogram -MM main.c

myprogram: main.c foo.h

• -M commands are used for make-like

rules already

• Works with many other languages

(including Rust)

Parsing with Nushell

~> clang -MM $target |

parse "{target}: {deps}" |

update deps { split row " " } |

into record

+--------+---------------+

| target | foo.o |

+--------+---------------+

| | +---+-------+ |

| deps | | 0 | foo.c | |

| | +---+-------+ |

| | | 1 | foo.h | |

| | | | | |

| | +---+-------+ |

+--------+---------------+

Clean it up

def build-target [target, binary?] {

let result = if (is-empty $binary) {

clang -MM $target

} else {

clang -MT $binary -MM

}

let rule = clang -MM $target |

parse "{target}: {deps}" |

update deps { split row " " } |

into record

transforms [$rule.target] into $rule.deps {

...

}

}

Conclusion

• Build systems need to catch up with language design

• Language designers need to do a better job exposing internals

• Check out quake as it develops, or make something better!

Conclusion

• Build systems need to catch up with language design

• Language designers need to do a better job exposing internals

• Check out quake as it develops, or make something better!

Conclusion

• Build systems need to catch up with language design

• Language designers need to do a better job exposing internals

• Check out quake as it develops, or make something better!

Links

• quake site: https://quake.build

• quake source: https://github.com/quake-build/quake

• Website: https://cassaundra.dev

• Email: cass@cassaundra.dev

• Fediverse: @cassaundra@meow.lgbt

• GitHub: @cassaundra

• sr.ht: ~cassaundra

https://quake.build
https://github.com/quake-build/quake

