
Nico Burns
Software Engineer

STATE OF RUST UI
May 6th, 2024

• Full Stack developer for ~15 years
• Working with Rust since ~1.0
• Currently working on:

• DioxusLabs’ Blitz
• Taffy (layout)

• Servo
• Modularisation
• Layout

• Connecting the Rust UI ecosystem

• Also maintain a curated crate directory “https://blessed.rs”

About me

https://blessed.rs/

• Situate Rust UI within the wider context of UI general
• Describe the overall shape of the ecosystem

• The sorts of solutions that people are building
• Who is building things. And how they are coordinating with each other.

• Consider “Are we GUI yet”?
• What capabilities do Rust UIs currently have or not have
• What work is currently in-progress
• Future challenges and opportunities

• Discuss Rust’s suitability for GUI development
• Areas in which the language/toolchain could improve

• Discuss relationship between ”native” and “web”

This talk will:

High-Level Overview

• “Actually Native” (OS Native)
• Win32, WPF, Cocoa (AppKit/UIKit)
• SwiftUI, Jetpack Compose

• Traditional cross-platform
• QT, GTK

• Modern cross-platform
• React Native
• Flutter

• Web-based
• Electron, Capacitor

• Other (not the focus of this talk)
• TUIs, Immediate Mode / Game UIs, Embedded,

Document Rendering

“Tier 1” UI Toolkits

90%* of apps
use one of these
*Numbers entirely

made up

PRO
• Same reasons we love Rust in

other domains:
• Performance + Type System +

Ergonomics, etc

• Cross platform with high fidelity
• Opportunity to replace lower-level

C and C++ libraries without losing
performance.
• Can potentially write the whole

stack in one language
• Can target web (DOM) via WASM

efficiently.

Why do UI in Rust?

CON
• Can be verbose compared to

other languages
• Difficult to manage shared state
• Poor compile times
• Particularly important for UI which

often can’t be captured by types.

• Reinventing the wheel

• Mostly flutter-style and web-style
• Flutter-ish: Iced, Slint, Xilem, Makepad, Floem, GPUI, Vizia, Freya, Ribir, KAS, Cushy
• Web-ish: Servo, Tauri, Blitz (+ “actually web”: Dioxus, Leptos, Sycamore, etc)
• Minimal “actually native”: FF Crash Reporter, GTK, rfd

• “Cambrian explosion”
• Similar to frontend web framework ecosystem
• Lots of options (some bigger than others)
• Friendly competition

• Highly modular (sometimes)
• Sharing of underlying libraries (Winit, AccessKit, WGPU, Cosmic-Text, Taffy, etc, etc)
• Sharing across domains (App UI, Web Engines, Game Engines, even TUI)
• Not everyone shares this philosophy + Not always practiced perfectly.

• Mix of community and commercially funded work

Rust UI landscape

• UI Frameworks: Iced, Slint, Xilem, Makepad, Floem, GPUI, Vizia, Freya, Ribir,
KAS, Cushy, zng
• Immediate mode: egui, rui
• TUI: ratatui
• “Actually Native”: gtk-rs, relm, FF Crash reporter, rfd, native-windows-gui
• Frontend Web Frameworks: Dioxus, Leptos, Yew, Sycamore, Sauron
• Web engines: Servo, Blitz, Firefox, Chrome, Tauri
• Game engines: Bevy, Fyrox
• Document creation: Typst, Prince
• Text Editors: Lapce, Zed
• Terminals: Alacritty, Cosmic Terminal

Wide Range of Projects

Are we GUI yet?

• Library Ecosystem Capabilities
• Windowing
• Rendering
• Layout
• Input
• Accessibility & Automation
• State Management & Reactivity
• Widgets & “Styling”
• Everything else

• Developer Experience
• Documentation
• Compile Times
• Rust language issues

Are we GUI yet?

Library Ecosystem Capabilities

• Create windows
• HiDPI (scale factor)
• Multiple windows
• Sub-windows
• Embed within existing application
• Popup menus / Modals

• Mobile
• Activities
• Widgets (homescreen, lock screen, start

menu, sidebar, etc)
• Web
• Other (full screen, resizing, blur, etc)

Windowing

• Winit
• Glazier -> Merging with Winit
• Winit refactoring to trait-based API
• Needs more API coverage
• Needs better extensibility
• Platform-specific functionality

• Baseview and nih-plug
• DAW Plugins
• Q: Can It be used with winit?

• Makepad
• Code generation

NEEDS AVAILABLE SOLUTIONS

• Software (CPU) rendering
• Softbuffer

• OpenGL
• Glutin, Glow

• Vulkan / Metal / DX12
• Ash, Metal, d3d12, etc

• WGPU

Rendering: low-level

Traditional Shaders
Compute Shaders

Rendering: High level
Library Rendering Users Notes

skia-safe CPU/OpenGL/Metal/
Vulkan/dx12

Chromium, Vizia,
Freya

Fast, capable but C++ and hard to build.
Good short-term option.

tiny-skia CPU Iced Rust port of Skia. But slower and CPU only. Good
option for pure-rust gpu rendering.

webrender OpenGL Firefox, Servo, zng Fast, capable but poorly documented. May be more
usable soon.

femtovg OpenGL Slint Simple API with average performance. Lacks some
advanced features.

vger-rs wgpu Floem Good performance but some missing features (like
raster images)

vello wgpu (compute) Xilem, Blitz Cutting edge but still immature.

(raw) wgpu wgpu Iced, Bevy, Inlyne You may not even need a high-level library

In general: Poor support for blur, shadows and other similar effects.
Many high-level renderers do not integrate well with other custom rendering code.

Rendering: glyphs

• swash
• Pure rust scaling/hinting
• Path rendering with “zeno”
• Fake bold/italic

• skrifa
• Successor to Swash’s hinting
• From “fontations” project
• Does scaling / hinting. Only

needs a path renderer

• wr_glyph_renderer
• Delegates to system libraries
• Freetype on linux

Other: Fake bold / Italic.

Rendering: system compositor
• Use cases:
• Power-efficient scrolling
• Embedding: video, webviews, platform-native widgets, other app's content

• Platform support:
• Windows 8, macOS, iOS, Android, Wayland.
• Emulate for X11, older windows, web.

• Missing piece of Rust ecosystem
• WebRender supports the model (used in Firefox)
• Abandoned Planeshift library (github.com/pcwalton/planeshift)
• But nothing easily usable

https://github.com/pcwalton/planeshift/

• Open layout:
• Methods on a trait that allow for arbitrary

algorithm to be implemented in ”userland”
• Win32, Cocoa, GTK, Flutter
• Iced, Xilem, etc

• Closed layout
• Fixed set of built-in layout

widgets/algorithms
• Web, React Native
• Floem, GPUI, Vizia, Blitz

Layout: Open vs. Closed

Open layout still requires decisions:
• Who decides final size? (parent / child)
• What information is available? (parent size?

sibling sizes?)
• Compare: Web vs. Flutter vs. SwiftUI

Extra Open: Flutter’s ”Sliver”
system for virtualised layout

• Web like (Flexbox, CSS grid, etc):
• + Familiar, expressive, well-specified
• - Performance, some find confusing
• React Native, Flutter, 3rd-party
• Available via Taffy library
• Floem, GPUI, Blitz, (Xilem?)

• Simplified (Stretch/Fill)
• + Performance, simpler
• - Expressivity, maturity of impls.
• GTK, SwiftUI, Sciter
• Available via Morphorm crate
• Iced, Vizia

• Constraint based
• + Most expressive
• - !performance!, can be confusing
• Apple AutoLayout, (QT?)
• Ratatui

Layout: Box Layout
In general:
• Tree of boxes
• Fixed/Extrinsic/Intrinsic/Smart sizing
• 1-dimensional (stack/flexbox)
• 2-dimensional (grid)
• Z-order (ability to place boxes on top

of each other

Layout: Text

• Shaping
• Bidi
• Rich text (font sizes, styles)
• Mixed content

(e.g. inline images / widgets)
• Excluded areas
• Floated content
• Padding/border
• Selection (hit testing)
• Editing

• cosmic-text
• parley
• Future: servo’s layout crate?

NEEDS AVAILABLE SOLUTIONS

For shaping:
• harfbuzz (sys, rust-harbuzz, harfbuzz_rs)
• rustybuzz
• allsorts
• swash
• Future: fontations?

Input

Basics
• Mouse (coords/wheel/click)

• Out of bounds mouse events

• Touch screen
• multitouch, pressure

• Touchpad gestures
• Keyboard

• Dead keys
• Configurable layouts

• Decent-ish support in winit

IME (Input Method Editor)
• Used for:

• Composed characters
(latin accents, CJ characters)

• Emoji keyboards
• Autocorrect (some platforms?)
• Voice input (AI input?)

• Different APIs on different platforms
• Basic support in winit (needs to be

better)
• Linebender implementing for Android

(+ others?)

State Management / Reactivity
• Traditionally imperative
• GTK, Win32, Cocoa, etc

• Modern frameworks are declarative
• React, Flutter, SwiftUI, Jetpack Compose

• Can separate “view” and “widget” layers:
• React: DOM, Native, SVG, PDF
• Dioxus, Leptos, Xilem

Different styles:
• Coarse-grained vs. fine grained
• Borrow checking: Callbacks to managed state

(Dioxus/Leptos) vs. message passing (Iced/Relm)
• Dynamically typed vs. macro-based vs. type/trait

based

Iced Xilem

Accessibility & Automation

• Need to:
• Expose widget tree to system via

accessibility APIs (for e.g. screen readers
to access)
• Drive widget updates in reaction to

accessibility events
• Implement focus & keyboard navigation
• Global font-size / zoom control
• And much more…

• AccessKit:
• Abstracts system accessibility APIs
• Supported: Windows/macOS/Linux
• Planned: iOS/Android/Web
• Winit adapter available
• Adoption: Xilem, Vizia, Freya, zng

ACCESSIBILITY AUTOMATION / INTROSPECTION

• Automated testing APIs also:
• Query UI state
• Programmatically drive UI

• Devtools
• e.g. Layout inspector, state inspector
• Need live updates
• Edit as well as inspect
• Floem, Freya have some but bad
• See: Masonry vision article

ß Very hard to implement on web if not
rendering to DOM

Everything else (the long tail…)
• System Menus
• File dialogs
• Clipboard
• Drag & Drop between apps
• Tray icons
• Default app file/url handling
• Location
• Sharing
• Biometrics
• Camera
• Storage Access (Photo Gallery, etc)
• Accelerometer
• Bluetooth / NFC

• Look at React Native and Flutter
ecosystems for just how deep this
rabbit hole goes
• Some of this (e.g. HTTP, SQLite) can be

fulfilled by the general Rust
ecosystem.
• But there is a LOT

Developer Experience

• End-user documentation
• Reference (rustdoc)
• Guide level
• Examples
• Changelog
• Roadmap
• Comparison to similar

libraries
• Feature support table
• Where to find community

Documentation

• Developer documentation
• Code comments
• Git commit messages
• Build/test instructions
• Contribution guidelines
• Architecture docs
• Code / module structure docs
• Key concepts, types, and code

flow

People use and contribute to documented libraries!

Dioxus Guide

Iced Guide

Iced Examples

Makepad‘s docs

makepad-widgets (docs.rs)

parley (docs.rs)

cosmic-text (docs.rs)

taffy (docs.rs)

Compile times
• Compiler improvements
• Macro caching
• Faster / Incremental linking (mold/wild)
• Faster codegen / JIT (rustc_codegen_clif)
• Improve parallelism (e.g. frontend)
• Stable ABI / dynamic loading

• Toolchain improvements
• Better support for code generation / feature flags
• Binary deps (branch switches are painful)

• Hot reloading
• Dioxus / Leptos / Bevy have this

• Directly optimize crates (reduce bloat)
• Platform crates (windows-rs, etc)
• Common crates (syn, serde, etc)

Rust Language Issues (1/2)
• Use of Rc/Arc is verbose. Implicit clone would

help (opt-in per type?)

• Methods cannot borrow only some fields of
their struct
• Works for closures. Main blocker is syntax

• Lack of support for "partial default".
• Named/Optional arguments and/or per-field

defaults for structs
• Would also benefit API clients (similarly high-level

code)

Rust Language Issues (2/2)
• Orphan rules / delegation
• Harms modularity and interoperability across the ecosystem

• Specialization
• Would allow for more ergonomic APIs that automatically special-case certain types
• A kind of “overloading” - again very nice for high-level APIs

• External build system / Code generation
• Could help reduce bloat (compile times)
• Useful for customizing crates (e.g. stylo)

Takeaways

• Getting text right (Layout, IME)
• Accessibility / Automation / Introspection
• Winit improvements
• Build out widget library(s)
• Document, Document, Document!

The Road Ahead

• Compiler / toolchain improvements
• System Compositor
• Long tail of integrations

Short-Medium Term

Medium-Long Term

Thank you
Any Questions?

