RusiL. GOSIM Zhore

. LI .
I| : ” l“ . lllot”"lmlll 1 / '
eed R1TN Bued BN HHHRHEHE 11 &k

A " o - . iy 1
gy Yoo e e P Quai inn Y hudilll] @ N

STATE oF RusT Ul

Nico Burns
Software Engineer

May 6t 2024

About me GOSIM Zroee

* Full Stack developer for ~15 years
* Working with Rust since ~1.0

* Currently working on:
* DioxusLabs’ Blitz
« Taffy (layout)

* Servo
* Modularisation
* Layout
e Connecting the Rust Ul ecosystem

* Also maintain a curated crate directory “https://blessed.rs”

https://blessed.rs/

This talk will: GOSIM Zaoee

* Situate Rust Ul within the wider context of Ul general

* Describe the overall shape of the ecosystem
* The sorts of solutions that people are building
* Who is building things. And how they are coordinating with each other.

* Consider “Are we GUI yet”?
* What capabilities do Rust Uls currently have or not have
 What work is currently in-progress
e Future challenges and opportunities

* Discuss Rust’s suitability for GUI development
* Areas in which the language/toolchain could improve

* Discuss relationship between "native” and “web”

A b

GOSIM 22 i it Yottt

High-Level Overview

“Tier 1”7 Ul Toolkits

e “Actually Native” (OS Native)
* Win32, WPF, Cocoa (AppKit/UIKit)
* SwiftUl, Jetpack Compose

* Traditional cross-platform
* QT, GTK

* Modern cross-platform

 React Native
e Flutter

 Web-based

* Electron, Capacitor

e Other (not the focus of this talk)

GOSI

* TUIs, Immediate Mode / Game Uls, Embedded,

Document Rendering

2024
EUROPE

90%* of apps
use one of these

*Numbers entirely
made up

Why do Ul in Rust?

PRO

e Same reasons we love Rust in
other domains:

* Performance + Type System +
Ergonomics, etc

* Cross platform with high fidelity

* Opportunity to replace lower-level
C and C++ libraries without losing
performance.

e Can potentially write the whole
stack in one language

e Can target web (DOM) via WASM
efficiently.

G 0, S I E?JZF?OPE

CON

e Can be verbose compared to
other languages

e Difficult to manage shared state

* Poor compile times

e Particularly important for Ul which
often can’t be captured by types.

* Reinventing the wheel

Rust Ul landscape GOSIM Erore

* Mostly flutter-style and web-style
* Flutter-ish: Iced, Slint, Xilem, Makepad, Floem, GPUI, Vizia, Freya, Ribir, KAS, Cushy
* Web-ish: Servo, Tauri, Blitz (+ “actually web”: Dioxus, Leptos, Sycamore, etc)
* Minimal “actually native”: FF Crash Reporter, GTK, rfd

* “Cambrian explosion”
e Similar to frontend web framework ecosystem
 Lots of options (some bigger than others)
* Friendly competition

* Highly modular (sometimes)
e Sharing of underlying libraries (Winit, AccessKit, WGPU, Cosmic-Text, Taffy, etc, etc)
e Sharing across domains (App Ul, Web Engines, Game Engines, even TUI)
* Not everyone shares this philosophy + Not always practiced perfectly.

* Mix of community and commercially funded work

Wide Range of Projects GOSIM Efore

* Ul Frameworks: Iced, Slint, Xilem, Makepad, Floem, GPUI, Vizia, Freya, Ribir,
KAS, Cushy, zng

 Immediate mode: egui, rui

* TUI: ratatui

e “Actually Native”: gtk-rs, relm, FF Crash reporter, rfd, native-windows-gui
* Frontend Web Frameworks: Dioxus, Leptos, Yew, Sycamore, Sauron
 Web engines: Servo, Blitz, Firefox, Chrome, Tauri

* Game engines: Bevy, Fyrox

* Document creation: Typst, Prince

* Text Editors: Lapce, Zed

* Terminals: Alacritty, Cosmic Terminal

Are we GUI yet?

Are we GUI yet? GOSIM Erore

* Library Ecosystem Capabilities * Developer Experience
 Windowing * Documentation
* Rendering * Compile Times
* Layout Rust language issues
* Input

Accessibility & Automation

* State Management & Reactivity
* Widgets & “Styling”

* Everything else

A b

GOSIM 22 i it Yottt

Library Ecosystem Capabilities

Windowing GOSIM Efore

NEEDS AVAILABLE SOLUTIONS
e Create windows * Winit
« HiDPI (scale factor) e Glazier -> Merging with Winit

* Winit refactoring to trait-based API
* Needs more API coverage

* Needs better extensibility

* Platform-specific functionality

* Multiple windows

* Sub-windows
* Embed within existing application

* Popup menus / Modals , _
* Baseview and nih-plug

* Mobile .
* Activities D'_A‘W Plugblns d with winit?
e Widgets (homescreen, lock screen, start Q: Can It be used with winit:
menu, sidebar, etc) * Makepad
 Web Code generation

e Other (full screen, resizing, blur, etc)

Rendering: low-level GOSIM e

 Software (CPU) rendering
e Softbuffer

* OpenGL

e Glutin, Glow

* Vulkan / Metal / DX12
+ Ash, Metal, d3d12, etc Traditional Shaders

.« WGPU Compute Shaders

Rendering: High level

G\'SI ECL)JZI?OPE

Library Rendering Users Notes
skia-safe CPU/OpenGL/Metal/ | Chromium, Vizia, Fast, capable but C++ and hard to build.
Vulkan/dx12 Freya Good short-term option.

tiny-skia CPU Iced Rust port of Skia. But slower and CPU only. Good
option for pure-rust gpu rendering.

webrender OpenGL Firefox, Servo, zng | Fast, capable but poorly documented. May be more
usable soon.

femtovg OpenGL Slint Simple API with average performance. Lacks some
advanced features.

vger-rs wgpu Floem Good performance but some missing features (like
raster images)

vello wgpu (compute) Xilem, Blitz Cutting edge but still immature.

(raw) wgpu wgpu Iced, Bevy, Inlyne | You may not even need a high-level library

In general: Poor support for blur, shadows and other similar effects.

Many high-level renderers do not integrate well with other custom rendering code.

Rendering: glyphs

 wr_glyph_renderer
* Delegates to system libraries
* Freetype on linux

* swash
* Pure rust scaling/hinting

* Path rendering with “zeno”
* Fake bold/italic

e skrifa
* Successor to Swash’s hinting
* From “fontations” project

* Does scaling / hinting. Only
needs a path renderer

GOSIM 2w
J\ s EUROPE

Other: Fake bold / Italic.

pub trait OutlinePen {

//
fn

fn
fn

fn

)5
fn

Required methods
move_to(&mut self, x: 32, y: f32);

Lline_to(&mut self, x: 32, y: f32);
quad_to(&mut self, cx0: 32, cy0: 32, x: 32, y: f32);

curve_to(
&mut self,
cx0: 32,
cy0: 32,
cxl: 32,
cyl: 32,
x: 32,

y: f32

close(&mut self);

Rendering: system compositor GOSIM erore

e Use cases:

* Power-efficient scrolling
* Embedding: video, webviews, platform-native widgets, other app's content

* Platform support:
* Windows 8, macQS, iOS, Android, Wayland.
 Emulate for X11, older windows, web.

* Missing piece of Rust ecosystem
* WebRender supports the model (used in Firefox)

* Abandoned Planeshift library (github.com/pcwalton/planeshift)
* But nothing easily usable

https://github.com/pcwalton/planeshift/

Layout: Open vs. Closed

* Open layout:

* Methods on a trait that allow for arbitrary
algorithm to be implemented in “userland”

* Win32, Cocoa, GTK, Flutter
* |ced, Xilem, etc

* Closed layout
* Fixed set of built-in layout
widgets/algorithms
* Web, React Native
* Floem, GPUI, Vizia, Blitz

Open layout still requires decisions:
* Who decides final size? (parent / child)
 What information is available? (parent size?
sibling sizes?)
 Compare: Web vs. Flutter vs. SwiftUI

(S‘w)ESIh/léﬂﬁgPE

pub trait Layout {

fn compute_child_layout(
&mut self,
node_id: Nodeld,
inputs: LayoutInput
) —> LayoutOutput;

Extra Open: Flutter’s ”Sliver”
system for virtualised layout

Layout: Box Layout GOSIM Erore
In general: * Web like (Flexbox, CSS grid, etc):

* + Familiar, expressive, well-specified
- Performance, some find confusing
React Native, Flutter, 3"-party
Available via Taffy library

Floem, GPUI, Blitz, (Xilem?)

* Tree of boxes
Fixed/Extrinsic/Intrinsic/Smart sizing
1-dimensional (stack/flexbox)
2-dimensional (grid)

Z-order (ability to place boxes on top * Simplified (Stretch/Fill)

of each other + Performance, simpler

- Expressivity, maturity of impls.
GTK, SwiftUl, Sciter

Available via Morphorm crate
Iced, Vizia

* Constraint based
* + Most expressive
e - Iperformance!, can be confusing
* Apple Autolayout, (QT?)
* Ratatui

Layout: Text

NEEDS

* Shaping
* Bidi
* Rich text (font sizes, styles)

* Mixed content
(e.g. inline images / widgets)

* Excluded areas

* Floated content

* Padding/border

* Selection (hit testing)
* Editing

GK)S I M E?JZF?OPE

AVAILABLE SOLUTIONS

e cosmic-text

* parley

e Future: servo’s layout crate?

For shaping:

harfbuzz (sys, rust-harbuzz, harfbuzz_rs)
rustybuzz

allsorts

swash

Future: fontations?

InpUt GK)SI ECL)JZF?OPE

Basics IME (Input Method Editor)
* Mouse (coords/wheel/click) * Used for:
e Out of bounds mouse events Composed characters

(latin accents, CJ characters)
* Emoji keyboards
* Autocorrect (some platforms?)

 Touch screen
* multitouch, pressure

* Touchpad gestures Voice input (Al input?)
* Keyboard » Different APIs on different platforms
* Dead keys

_ * Basic support in winit (needs to be
* Configurable layouts better)

* Decent-ish support in winit * Linebender implementing for Android

(+ others?)

2024

State Management / Reactivity GOSIM 2o

* Traditionally imperative fmappl) == Elenent

let mut count = use_signal(|]| 0);

* GTK, Win32, Cocoa, etc 50

hl { "High-Five counter: {count}" }
button { onclick: move |_| count += 1, "Up high!" }

* Modern frameworks are declarative S 4 i e] CRE o 5L, Tren e 5
}
e React, Flutter, SwiftUl, Jetpack Compose)

e Can separate “view” and “widget” layers:
* React: DOM, Native, SVG, PDF #[component]

pub fn SimpleCounter(initial_value: i32) —-> impl IntoView {

H H // create a reactive signal with the initial value
¢ DIOXUS, LeptOS, Xllem let (value, set_value) = create_signal(initial_value);
° . // create event handlers for our buttons
lefe re nt Styles. // note that “value® and “set_value' are "Copy’ , so it's super e
let clear = move |_| set_value(0);
_ H H 1 let decrement = move |_| set_value.update(|value| *value -= 1);
° Coarse gralned VS' flne gralned let increment = move |_| set_value.update(|value| *value += 1);
o BorrOW CheCking: Ca”baCkS tO managEd State // create user interfaces with the declarative “view!' macro
. . view! {
(Dioxus/Leptos) vs. message passing (Iced/Relm) <div> |
<button on:click=clear>Clear</button>
. . <button on:click=decrement>-1</button>
* Dynamically typed vs. macro-based vs. type/trait) e TR G [(] o T
"Value: " {value} "!"
ba SEd <button on:click=increment>+1</button>
</div>
}

}

(:;(;ﬁ)fs;l éﬁﬁ:DPE

#[derive(Debug, Clone, Copy)] e e
pub enum Message {
Iced Increment, struct Count.er‘ {
Decrement, value: i32,

) } Xilem

Now, let's show the actual counter by putting it all together in our view logic:

use iced::widget::{button, column, text, Column}; O fn app_logic(data: &mut u32) -> impl View<u32, (), Element = impl Widget> {
. Column: :new((
impl Counter
pub fn view(&self) —> Column<Message> { Button::new(format!("count: {}", data), |data| xdata += 1),
// We use a column: a simple vertical layout Button::new("reset", |data| *data = 0),
column! [
// The increment button. We tell it to produce an))
// “Increment’ message when pressed }

button("+").on_press(Message::Increment),

// We show the value of the counter here
text(self.value).size(50),

// The decrement button. We tell it to produce a
// “Decrement’ message when pressed
button("-").on_press(Message::Decrement),

Finally, we need to be able to react to any produced messages and change our state accordingly in our update
logic:

impl Counter { i
[f =as

pub fn update(&mut self, message: Message) {
match message {
Message::Increment => {
self.value += 1;
+
Message: :Decrement => {
self.value -= 1;

b

Accessibility & Automation

ACCESSIBILITY

* Need to:

* Expose widget tree to system via
accessibility APls (for e.g. screen readers
to access)

Drive widget updates in reaction to
accessibility events

Implement focus & keyboard navigation
Global font-size / zoom control
And much more...

* AccessKit:
e Abstracts system accessibility APls
* Supported: Windows/macQOS/Linux
e Planned: iOS/Android/Web
* Winit adapter available
* Adoption: Xilem, Vizia, Freya, zng

GK)SIM E?JZF?OPE
AUTOMATION / INTROSPECTION

 Automated testing APlIs also:
* Query Ul state
* Programmatically drive Ul

e Devtools

* e.g. Layout inspector, state inspector
Need live updates
Edit as well as inspect
Floem, Freya have some but bad
See: Masonry vision article

< Very hard to implement on web if not
rendering to DOM

2024

Everything else (the long tail...) GOSIM o

* System Menus e Look at React Native and Flutter
File dialogs ecosystems for just how deep this
Clipboard rabbit hole goes

Drac & Drob between apps * Some of this (e.g. HTTP, SQLite) can be
5 g PP fulfilled by the general Rust

ecosystem.
e But thereis a LOT

Tray icons

Default app file/url handling

Location

e Sharing

* Biometrics

* Camera

 Storage Access (Photo Gallery, etc)
* Accelerometer

e Bluetooth / NFC

A b

GOSIM 22 i it Yottt

Developer Experience

Documentation GOSIM Ziore

* End-user documentation * Developer documentation
e Reference (rustdoc) Code comments
* Guide level e Git commit messages
* Examples Build/test instructions

* Changelog e Contribution guidelines

* Roadmap e Architecture docs

* Comparison to similar e Code / module structure docs
libraries » Key concepts, types, and code

* Feature support table flow

Where to find community

People use and contribute to documented libraries!

Dioxus Guide GOSIM Zroee

Z Dioxus Labs Learn Blog Awesome docs.rs” Q, DEPLOY
Liveview
Fullstack >
Introduction I H On this page
ntroduction
Getting Started Features
) Router
Dioxus is a portable, performant, and ergonomic framework for building cross-platform Multiplatform . e Protect »
. Xample Projec
user interfaces in Rust. This guide will help you get started with writing Dioxus apps for Stability P)

Guide

Your First Component
State

the Web, Desktop, Mobile, and more.

Edit this page!

Reference >

use dioxus::prelude: :%; Cookbook
Data Fetching Go to version
Full Code pub fn App() —> Element { Publishing

let mut count = use_signal(]|| 0); <0.5 Anti-patterns
<0.4 Error Handling
Reference s i <0.3 Integrations >
hl { "High-Five counter: {count}" }

RSX button { onclick: move |_| count += 1, "Up high!" } State Management >
Components button { onclick: move |_| count —= 1, "Down low!" } Testing
Props Examples
Event Handlers Tailwind
Hooks Custom Renderer
User Input Optimizing
Context
Dynamic Rendering cu

Routing
Resource
UseCoroutine
Spawn
Assets

Choosing A Web Renderer

High-Five counter: O

[Up high!] [Down low!]

Create a Project
Configure Project
Translate HTML

Contributing

Desktop Dioxus is heavily inspired by React. If you know React, getting started with Dioxus will
Mobile > be a breeze. Project Structure
Web Walkthrough of Internals

| https://dioxuslabs.com/learn/0.5/

This guide assumes you already know some Rust! If not, we recommend reading
the book to learn Rust first.

Guiding Principles

Rnadman

lced Guide

Introduction

Learning the Basics

1. Architecture
2. First Steps

3. The Runtime

Appendix

5. Additional Resources

2024
GK) SI EUROPE
iced — A Cross-Platform GUI Library for Rust

7

Introduction

iced is a cross-platform GUI library for Rust. It is inspired by EIm, a delightful functional language for
building web applications.

As a GUI library, iced helps you build graphical user interfaces for your Rust applications.

iced is strongly focused on simplicity and type-safety. As a result, iced tries to provide simple
building blocks that can be put together with strong typing to reduce the chance of runtime errors.

This book will:

¢ Introduce you to the fundamental ideas of iced.
¢ Teach you how to build interactive applications with iced.
e Emphasize principles to scale and grow iced applications.

Before proceeding, you should have some basic familiarity with Rust. If you are new to Rust or feel
lost at some point, | recommend you to read the official Rust book.

8 0 &

lced Examples

iced / examples /| [0

@ hecrj Improve layout of ferris e

Name

arc

bezier_tool

checkbox

clock

color_palette

combo_box

component

counter

custom_quad

custom_shader

custom_widget

download_progress

editor

events

exit

N BN SN BN SN B BN BN BN BN SN BN SN BN NN SN

sierpinski_triangle

slider

solar_system

stopwatch

styling

svg

system_information

the_matrix

toast

todos

tooltip

tour

url_handler

vectorial_text

visible_bounds

websocket

README.md

M ferris

0 game_of_life
0 geometry
I gradient

[0 integration
layout

lazy

loupe

modal
multi_window
multitouch
pane_grid

pick_list

pokedex

progress_bar
0 gr_code
B screenshot

I8 scrollable

loading_spinners

GOSIM Erore

Todos

A todos tracker inspired by TodoMVC. It showcases dynamic layout, text input, checkboxes, scrollables, icons, and async actions! It
automatically saves your tasks in the background, even if you did not finish typing them.

The example code is located in the main file.

todos

What needs to be done?

1 task left Al Completed

D Bake an appla pie Va

You can run the native version with cargo run :

cargo run --package todos

Makepad‘s docs

makepad-widgets vo0.6.0

Makepad widgets

Readme 4 Versions Dependencies Dependents

makepad-widgets

Overview

This is the top-level crate for Makepad Framework, a next-generation Ul
framework for Rust. Applications built using Makepad Framework can run both
natively and on the web, are rendered entirely on the GPU, and support a novel
feature called live design.

Live design means that Makepad Framework provides the infrastructure for
other applications, such as an IDE, to hook into your application and change
its design while your application keeps running. To facilitate this, the styling of
Makepad Framework applications is described using a DSL. Code written in this
DSL is tightly integrated with the main Rust code via the use of proc macros.

An IDE that is live design aware detects when changes are made in DSL code
rather than in Rust code, so that instead of triggering a full recompilation, it
can send the changes to the DSL code over to the application, allowing the
latter to update itself. (The makepad-studio crate contains a working prototype
of an IDE that will eventually be capable of this, but it is still under heavy
development.)

GOSI

This crate contains a collection of basic widgets that almost every application
needs. At the moment of this writing, the following widgets are supported:

Windows
Dropdown menus
Docks
Splitters

Tab bars
Frames
Scrollbars

File trees
Labels
Buttons
Checkboxes
Radio buttons
Color pickers

In addition to these widgets, this crate also contains re-exports of two lower
level crates, namely makepad-draw-2d, which contains all code related to
drawing applications, and makepad-platform, which contains all platform
specific code. Finally, it contains a collection of base fonts.

In short, to build an application in Makepad Framework, most of the time this
crate is the only one you'll need.

Caveats

Although Makepad Framework is complete enough that you can write your own
applications with it, it is still under heavy development. At the moment, we
only support Mac and web, (though we intend to add support for Windows and
Linux very soon). We also make no guarantees at this point with respect to API
stability. Please keep that in mind should you decide to use Makepad
Framework for your own applications. Finally, we still lack significant
functionality in the areas of font rendering, internationalization, etc.

2024
EUROPE

Examples

Simple Example

A very simple example, consisting of window with a button and a counter, can
be found in the makepad-example-simple crate. It's fairly well commented, so
this should be a good starting point for playing around with Makepad
Framework.

Ironfish (Electronic Synthesizer)

A much more impressive example can be found in the makepad-example-
ironfish crate. Ironfish is an electronic synthesizer written entirely in Makepad
Framework. If you want to get an idea of the kind of applications you could
build with Makepad Framework, this is the example for you.

Contact

If you have any questions/suggestions, feel free to reach out to us on our
discord channel: https://discord.com/invite /urEMqtMcSd=

makepad-widgets (docs.rs)

Click or press ‘S’ to search, ‘?’ for more options...

Crate makepad_widgets &

Re-exports

pub
pub
pub
pub
pub
pub
pub
pub
pub
pub
pub
pub
pub
pub
pub
pub
pub
pub
pub
pub
pub
pub
pub
pub
pub

use
use
use
use
use
use
use
use
use
use
use
use
use
use
use
use
use
use
use
use
use
use
use
use
use

crate:
crate:
crate:
crate:
crate:
crate:
crate:
crate:
crate:
crate:
crate:
crate:
crate:
crate:
crate:
crate:
crate:
crate:
crate:
crate:
crate:
crate:

:data_binding::DataBindingStore;
:data_binding::DataBindingMap;
ttab::TabClosable;
:scroll_bars::ScrollBars;
:scroll_shadow: :DrawScrollShadow;
:scroll_bar::ScrollBar;
:slides_view::SlidesView;
:widget: :WidgetSet;

:widget: :WidgetSetIterator;
:widget: :WidgetUid;

:widget: :WidgetDraw;

twidget: :WidgetDrawApi;
:widget: :CreateAt;

:widget: :WidgetActions;
:widget: :WidgetActionsApi;
:widget: :WidgetActionItem;
twidget: :WidgetRef;

:widget: :Widget;

:widget: :WidgetRegistry;
:widget: :WidgetFactory;
:widget: :WidgetAction;
:widget: :DrawStateWrap;

makepad_draw: :makepad_platform;

makepad_draw;

makepad_derive_widget;

GOSI

2024
EUROPE

?

source - [-]

parley (docs.rs) GOSIM &fore

Crate parley E source - [-]

[-] Rich text layout.
Re- expo rts

pub use context::LayoutContext;
pub use font::FontContext;

pub use layout::Layout;

pub use fontique;

pub use swash;

Modules
context Context for layout.
font

layout Layout types.
style Rich styling support.

Structs

Font Owned shareable font resource.

cosmic-text (docs.rs) GOSIM &ore

Crate cosmic_text E source - [-]
// Set a size for the text buffer, 1in pixels
-] COSMIC Text buffer.set_size(80.0, 25.0);
This library provides advanced text handling in a generic way. It provides abstractions for shaping, font discovery, font fallback, // Attributes indicate what font to choose
layout, rasterization, and editing. Shaping utilizes rustybuzz, font discovery utilizes fontdb, and the rasterization is optional and let attrs = Attrs::new();

utilizes swash. The other features are developed internal to this library.
// Add some text!

It is recommended that you start by creating a FontSystem, after which you can create a Buffer, provide it with some text, and buffer.set_text("Hello, Rust! #\n'", attrs, Shaping::Advanced);
then inspect the layout it produces. At this point, you can use the SwashCache to rasterize glyphs into either images or pixels.

// Perform shaping as desired

use cosmic_text::{Attrs, Color, FontSystem, SwashCache, Buffer, Metrics, Shaping}; buffer.shape_until_scroll(true);
// A FontSystem provides access to detected system fonts, create one per application // Inspect the output runs
let mut font_system = FontSystem::new(); for run in buffer.layout_runs() {

for glyph in run.glyphs.iter() {

// A SwashCache stores rasterized glyphs, create one per application printlnt("{:#2}", glyph);

let mut swash_cache = SwashCache::new();

// Text metrics indicate the font size and line height of a buffer
// Create a default text color

let metrics = Metrics::new(14.0, 20.0);
(’)3 let text_color = Color::rgb(0xFF, OxFF, OXFF);

// A Buffer provides shaping and layout for a UTF-8 string, create one per text widget 7 Brem e Butier (Ger perioriEnes, Jisted use Sresitadhn dirasily)

buffer.draw(&mut swash_cache, text_color, |x, y, w, h, color| {
// Fill 1in your code here for drawing rectangles

let mut buffer = Buffer::new(&mut font_system, metrics);

// Borrow buffer together with the font system for more convenient method calls 1
let mut buffer = buffer.borrow_with(&mut font_system);

taffy (docs.rs) GOSIM 2foee

Crate taffy & source - [-] High-level API
The high-level API consists of the TaffyTree struct which contains a tree implementation and provides methods that allow you to
- Taffy construct a tree of UI nodes. Once constructed, you can call the compute_layout_with_measure method to compute the layout

Taffy is a flexible, high-performance library for Ul layout. It currently implements the Flexbox, Grid and Block layout algorithms
from the CSS specification. Support for other paradigms is planned. For more information on this and other future development
plans see the roadmap issue.

§ Architecture
Taffy is based on a tree of “Ul nodes” similar to the tree of DOM nodes that one finds in web-based UI. Each node has:

¢ A Style struct which holds a set of CSS styles which function as the primary input to the layout computations.
* A Layout struct containing a position (x/y) and a size (width/height) which function as the output of the layout computations.
¢ Optionally:
o A Vec set of child nodes
© “Context”: arbitrary user-defined data (which you can access when using a “measure function” to integrate Taffy with other
kinds of layout such as text layout)

Usage of Taffy consists of constructing a tree of UI nodes (with associated styles, children and context), then calling function(s)
from Taffy to translate those styles, parent-child relationships and measure functions into a size and position in 2d space for each
node in the tree.

High-level API vs. Low-level API

Taffy has two APIs: a high-level API that is simpler and easier to get started with, and a low-level API that is more flexible gives
greater control. We would generally recommend the high-level API for users using Taffy standalone and the low-level API for users
wanting to embed Taffy as part of a wider layout system or as part of a UI framework that already has it’s own node/widget tree
representation.

(passing in a “measure function” closure which is used to compute the size of leaf nodes), and then access the layout of each node
using the layout method.

When using the high-level API, Taffy will take care of node storage, caching and dispatching to the correct layout algorithm for a
given node for you. See the TaffyTree struct for more details on this API.

Examples which show usage of the high-level API include:

® basic

o flexbox_gap

e grid_holy_grail
* measure

® cosmic_text

In particular, the “measure” example shows how to integrate Taffy layout with other layout modalities such as text or image layout
when using the high level APIL.

§ Low-level API

The low-level API consists of a set of traits (notably the LayoutPartialTree trait) which define an interface behind which you
must implement your own tree implementation, and a set of functions such as compute_flexbox_layout and
compute_grid_layout which implement the layout algorithms (for a single node at a time), and are designed to be flexible and
easy to integrate into a wider layout or UI system.

When using this API, you must handle node storage, caching, and dispatching to the correct layout algorithm for a given node
yourself. See the crate: :tree::traits module for more details on this API.

Examples which show usage of the low-level API are:

e custom_tree_vec which implements a custom Taffy tree using a Vec as an arena with Nodeld’s being index’s into the Vec.
* custom_tree_owned_partial which implements a custom Taffy tree using directly owned children with Nodeld’s being pointers.
¢ custom_tree_owned_unsafe which implements a custom Taffy tree using directly owned children with Nodeld’s being pointers.

2024

Compile times GOSIM Efore

Compiler improvements

* Macro caching

e Faster / Incremental linking (mold/wild)
* Faster codegen / JIT (rustc_codegen_clif)
* |Improve parallelism (e.g. frontend)

e Stable ABI / dynamic loading

Toolchain improvements

e Better support for code generation / feature flags
* Binary deps (branch switches are painful)

Hot reloading

* Dioxus / Leptos / Bevy have this

Directly optimize crates (reduce bloat)
 Platform crates (windows-rs, etc)

e Common crates (syn, serde, etc)

Rust Language Issues (1/2) GOSIM &ioee

Use of Rc/Arc is verbose. Implicit clone would
help (opt-in per type?)

Methods cannot borrow only some fields of

their struct
* Works for closures. Main blocker is syntax

Lack of support for "partial default".

 Named/Optional arguments and/or per-field
defaults for structs

 Would also benefit API clients (similarly high-level

code)

Rust Language Issues (2/2) GOSIM &ioee

* Orphan rules / delegation
 Harms modularity and interoperability across the ecosystem

e Specialization
 Would allow for more ergonomic APIs that automatically special-case certain types
 Akind of “overloading” - again very nice for high-level APIs

e External build system / Code generation
 Could help reduce bloat (compile times)
e Useful for customizing crates (e.g. stylo)

A b

GOSIM 22 i it Yottt

Takeaways

The Road Ahead GOSIM Ziore

Short-Medium Term

e Getting text right (Layout, IME)

* Accessibility / Automation / Introspection
* Winit improvements

 Build out widget library(s)

* Document, Document, Document!

Medium-Long Term

* Compiler / toolchain improvements
* System Compositor
* Long tail of integrations

THANK YOU

Any Questions?

GOSIM Erore

